内网 新内网

检测到您当前使用浏览器版本过于老旧,会导致无法正常浏览网站;请您使用电脑里的其他浏览器如:360、QQ、搜狗浏览器的极速模式浏览,或者使用谷歌、火狐等浏览器。

下载Firefox
何光明

邮  箱: heguangming@pku.edu.cn

职  称:副研究员

办公室地址:北京市海淀区颐和园路5号,太阳成集团tyc7111cc,王克桢楼,100871

所属实验室:邓兴旺实验室

实验室地址:北京市海淀区颐和园路5号,太阳成集团tyc7111cc,王克桢楼,100871

  • 个人简介
  • 科研领域
  • 代表性论文

教育经历:

2003.8 - 2006.7 , 理学博士 , 遗传学 , 复旦大学
2000.9 - 2003.7 , 农学硕士 , 作物遗传育种 , 中国农业大学
1990.9 - 1994.6 , 理学学士 , 生物技术 , 东北农业大学

工作经历:

2010.7 - 至今 , 副研究员 , 太阳成集团tyc7111cc
2009.1 - 2010.6 , 博士后 , 美国耶鲁大学
2006.8 - 2008.12 , 研究助理 , 北京生命科学研究所
1994.7 - 2000.8 , 研究实习员 , 湖北省农业科学院

书籍编撰:

邓兴旺(主编),李磊,钟上威,何光明(执行主编).《植物的身体》.商务出版社,2020年4月出版.
      植物杂种优势形成的分子机制
  植物杂种优势通常最明显地表现在与亲本相比,杂交子一代在生长或生物量上的优势。细胞是生物体行使功能的最基本单元,细胞分裂和周期的调控通过影响细胞数量和大小最终决定生长发育和生物量的积累。我们将从细胞层面解析植物生长或生物量杂种优势形成的分子机制,并进一步探讨其与产量杂种优势之间的关系。
  植物生长发育与免疫反应之间往往存在着动态平衡关系,植物激素调控网络在其中起重要作用。我们还将从生物胁迫响应相关植物激素通路及其与促生长类植物激素通路之间的交叉会话出发,深入探讨植物抗病杂种优势的分子机制及其与生长杂种优势之间的关系。
*Corresponding author
1. Xu, M., Wang, X., Liu, J., Jia, A., Xu, C., Deng, X.W.* and He, G.* (2022). Natural variation in the transcription factor REPLUMLESS contributes to both disease resistance and plant growth in Arabidopsis. Plant Commun: 100351.
2. Liu, W., Zhang, Y., He, H., He, G.* and Deng, X.W.* (2022). From hybrid genomes to heterotic trait output: Challenges and opportunities. Curr Opin Plant Biol 66: 102193.
3. Yang, L., Liu, P., Wang, X., Jia, A., Ren, D., Tang, Y., Tang, Y., Deng, X.W.* and He, G.* (2021). A central circadian oscillator confers defense heterosis in hybrids without growth vigor costs. Nat Commun 12(1): 2317.
4. Liu, W., He, G.* and Deng, X.W.* (2021). Biological pathway expression complementation contributes to biomass heterosis in Arabidopsis. Proc Natl Acad Sci U S A 118(16).
5. Lin, Z., Qin, P., Zhang, X., Fu, C., Deng, H., Fu, X., Huang, Z., Jiang, S., Li, C., Tang, X., Wang, X., He, G., Yang, Y., He, H., and Deng, X.W. (2020). Divergent selection and genetic introgression shape the genome landscape of heterosis in hybrid rice. Proc Natl Acad Sci U S A 117, 4623-4631.
6. Wang, X., Yang, M., Ren, D., Terzaghi, W., Deng, X.W.*, and He, G.* (2019). Cis-regulated alternative splicing divergence and its potential contribution to environmental responses in Arabidopsis. Plant J 97, 555-570.
7. Ren, D., Wang, X., Yang, M., Yang, L., He, G.*, and Deng, X.W.* (2019). A new regulator of seed size control in Arabidopsis identified by a genome-wide association study. New Phytol 222 895-906.
8. Yang, M., Wang, X., Ren, D., Huang, H., Xu, M., He, G.*, and Deng, X.W.* (2017). Genomic architecture of biomass heterosis in Arabidopsis. Proc Natl Acad Sci U S A 114, 8101-8106.
9. Yang, L., Li, B., Zheng, X.Y., Li, J., Yang, M., Dong, X., He, G.*, An, C.*, and Deng, X.W.* (2015). Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids. Nat Commun 6, 7309.
10. Wang, Y., Wang, X., Deng, W., Fan, X., Liu, T.T., He, G., Chen, R., Terzaghi, W., Zhu, D., and Deng, X.W. (2014). Genomic features and regulatory roles of intermediate-sized non-coding RNAs in Arabidopsis. Mol Plant 7, 514-527.
11. Wang, Y., Fan, X., Lin, F., He, G., Terzaghi, W., Zhu, D., and Deng, X.W. (2014). Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proc Natl Acad Sci U S A 111, 10359-10364.
12. Liu, T.T., Zhu, D., Chen, W., Deng, W., He, H., He, G., Bai, B., Qi, Y., Chen, R., and Deng, X.W. (2013). A global identification and analysis of small nucleolar RNAs and possible intermediate-sized non-coding RNAs in Oryza sativa. Mol Plant 6, 830-846.
13. He, G.*, Chen, B., Wang, X., Li, X., Li, J., He, H., Yang, M., Lu, L., Qi, Y., and Deng, X.W.* (2013). Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids. Genome Biol 14, R57.
14. Shen, H., He, H., Li, J., Chen, W., Wang, X., Guo, L., Peng, Z., He, G., Zhong, S., Qi, Y., Terzaghi, W., and Deng, X.W. (2012). Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24, 875-892.
15. He, G., Elling, A.A., and Deng, X.W. (2011). The epigenome and plant development. Annu Rev Plant Biol 62, 411-435.
16. Li, J., Li, G., Gao, S., Martinez, C., He, G., Zhou, Z., Huang, X., Lee, J.H., Zhang, H., Shen, Y., Wang, H., and Deng, X.W. (2010). Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. Plant Cell 22, 3634-3649.
17. He, G., Zhu, X., Elling, A.A., Chen, L., Wang, X., Guo, L., Liang, M., He, H., Zhang, H., Chen, F., Qi, Y., Chen, R., and Deng, X.W. (2010). Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22, 17-33.
18. Zha, X., Luo, X., Qian, X., He, G., Yang, M., Li, Y., and Yang, J. (2009). Over-expression of the rice LRK1 gene improves quantitative yield components. Plant Biotechnol J 7, 611-620.
19. Wang, X., Elling, A.A., Li, X., Li, N., Peng, Z., He, G., Sun, H., Qi, Y., Liu, X.S., and Deng, X.W. (2009). Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21, 1053-1069.
20. Zhang, H., He, H., Chen, L., Li, L., Liang, M., Wang, X., Liu, X., He, G., Chen, R., Ma, L., and Deng, X.W. (2008). A Genome-Wide Transcription Analysis Reveals a Close Correlation of Promoter INDEL Polymorphism and Heterotic Gene Expression in Rice Hybrids. Mol Plant 1, 720-731.
21. He, G., Luo, X., Tian, F., Li, K., Zhu, Z., Su, W., Qian, X., Fu, Y., Wang, X., Sun, C., and Yang, J. (2006). Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res 16, 618-626.

检测到您当前使用浏览器版本过于老旧,会导致无法正常浏览网站;请您使用电脑里的其他浏览器如:360、QQ、搜狗浏览器的极速模式浏览,或者使用谷歌、火狐等浏览器。

下载Firefox